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1. Introduction

During the last decade much attention has been paid to the N = 4 supersymmetric Yang-

Mills theory (SYM) and its deformations obtained by the orbifold [1] or orientifold [2]

projection, or by adding the marginal deformations [3] to the Lagrangian. Such deforma-

tions lead to a theory with less supersymmetry but inheriting some attractive features of

the original N = 4 SYM theory, namely, the conformal invariance, integrability [4, 5] in the

planar limit, and, especially, its connection with the dual string theory via the AdS/CFT

correspondence. This way it becomes possible to investigate nonperturbative features of

these theories.

Since the original version of the AdS/CFT correspondence [6] there have appeared a

lot of its modifications [7]. At the present time, it is not clear how to build gravity dual

to an arbitrary gauge theory or which properties of the gauge theories are necessary for

existence of this correspondence. However it is obvious that conformal invariance [8] of the

gauge theory plays a significant role in this matter. As it was already mentioned, the Leigh-

Strassler deformation of the N = 4 SYM theory [3] breaks the initial supersymmetry to

N = 1 supersymmetry and the SU(4)R symmetry down to U(1)R. One of such examples

is the so-called β-deformation of the original N = 4 SYM theory. Its gravity dual was

constructed by Lunin and Maldacena [9] and a significant role in this duality is played

by the U(1) × U(1) global symmetry of the β-deformed theory which was associated with

isometries of the deformed AdS5 × S̃5 background. There are also attempts to construct

the gravity dual to the full Leigh-Strassler deformation [10 – 12].

From the field theory side the investigation of the β-deformation of the N = 4 SYM

theory was dedicated mainly to finding the conditions of conformal invariance [13 – 16] and
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finiteness [15] of the theory, and to investigation of Chiral Primary Operators(CPO) [16, 17].

In the real β case [14], it was shown that the theory is exactly conformal in the planar

limit. For general β the condition of conformal invariance = finiteness in the planar limit

was found up to four loops in [18]. In the nonplanar case, the conformal condition was

found up to three loops in [16] and recently the first step towards the four-loop answer was

made in [19].

The case of the full Leigh-Strassler deformation was less investigated from the quantum

field theory side. The one-loop conformal condition was obtained almost five years ago [20,

21] while the three-loop anomalous dimension was recently calculated in [22] using the

results of the papers [23, 24]. Their result, however, seems not to coincide with us and

with the β-deformed case from [16]. Also, some CPO were investigated in [17]. In this

paper, we look for the conformal invariance of the full Leigh-Strassler deformation. Using

the dimensional regularization(reduction) we found conditions of conformal invariance up

to four loops in the planar limit and up to three loops in the non-planar one.

There are special cases when the conformal conditions are exhausted in the one-loop

order. In case of the β-deformed theory in the planar limit, this corresponds to real values

of β. We also found such solutions for the full Leigh-Strassler deformation. However, some

of these solutions happen to be unitary equivalent to the β-deformed case. This gives us

a useful cross check of our calculations. At the same time, also in the planar limit, there

exist non-trivial solutions which are not reduced to the β-deformed ones. We present them

below and conjecture that they might be valid in any loop order.

This family of solutions does not possess any global symmetries, except for Z3, and has

connections with the β-deformed N = 4 SYM at particular points. It would be very inter-

esting to understand their origin from the string theory side and build the corresponding

dual gravity background.

2. The Leigh-Strassler deformation of the N = 4 SYM theory

The so-called Leigh-Strassler deformation can be obtained by modification of the superpo-

tential in the original N = 4 SYM theory written in terms of N = 1 superfields:

S =

∫
d8zTr

(
e−gV Φ̄ie

gV Φi
)

+

(
1

2g2

∫
d6zTr(W αWα) +

∫
d6z W + h.c.

)
(2.1)

in such a way

WN=4 SY M = ig(Tr(Φ1Φ2Φ3) − Tr(Φ1Φ3Φ2)) → (2.2)

WLS SY M = i

[
h1Tr(Φ1Φ2Φ3) − h2Tr(Φ1Φ3Φ2) +

h3

3

3∑

i=1

Tr(Φ3
i )

]
,

where Φi with i = 1, 2, 3 are the three chiral superfields of the original N = 4 SYM theory

in the adjoint representation of the gauge group SU(N), and the couplings h1, h2, h3 are in

general complex. The β-deformed case in the same notation corresponds to

h1 = hq, h2 = h/q, q = eiπβ and h3 = 0.
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The Leigh-Strassler deformed superpotential breaks the SU(4)R symmetry of the orig-

inal N = 4 theory down to U(1)R. In addition, it is invariant under cyclic permutations of

(Φ1, Φ2, Φ3) and exchange: β ↔ 1 − β or in our notation h1 ↔ −h2.

In case of interest, as in any N = 1 SYM theory formulated in terms of N = 1

superfields, one has two types of divergent diagrams, those of the chiral field propagator

and of the gauge field one. The chiral vertices are finite due to the non-renormalization

theorems [25] and for the gauge vertices one can choose the background gauge [26] where

their divergent factors coincide with that of the gauge propagator. Thus, the only divergent

structures are the field propagators only. Moreover, the gauge field propagator is not

independent: its divergent structure is related to the chiral field propagators. This can be

seen, for example, from the explicit form of the NSVZ gauge beta function [27] expressed

in terms of the chiral field anomalous dimensions γ by

βg = g2

∑
T (R) − 3C(G) −

∑
T (R)γ(R)

1 − 2gC(G)
, g ≡ g2/16π2. (2.3)

where T (R) is the Dynkin index of a given representation R and C(G) is the quadratic

Casimir operator of the SU(N) gauge group. In the Leigh-Strassler deformed N = 4

SYM case one has the same field content as in N = 4 SYM, so
∑

T (R) = 3C(G) and

everything is defined by the chiral field anomalous dimension γ. Since conformal invariance

is understood as the vanishing of the beta function, the Leigh-Strassler deformed theory

is (super)conformal invariant on the sub-manifold in the coupling constant space which is

defined by the following condition

γ(g, {hi}) = 0, (2.4)

where {hi} = (h1, h2, h3). One can solve this condition (2.4) choosing the Yukawa

couplings in the form of perturbation series over g [28]:

hi = α0ig + α1ig
3 + α2ig

5 + . . . , i = 1 . . . 3. (2.5)

If the anomalous dimensions of the chiral fields vanish, so do the gauge and Yukawa beta

functions and the theory is conformally invariant.

Conformal invariance also means that the theory is finite, i.e., all UV divergencies

cancel (or in some gauges the sum of divergencies) and the renormalization factors Z (or

their products) are equal to 1 or finite. In the context of dimensional regularization [29]

this can be achieved by adding to expansion over g (2.5) a similar expansion over the

parameter of dimensional regularization ε = 4 − D, i.e., one has the two-fold expansion

instead of one-fold one [30]

hi = g
(
ai + α

(1)
0i ε + α

(2)
0i ε2 + . . . + α

(n−2)
0i εn−2 + α

(n−1)
0i εn−1 + α

(n)
0i εn + . . .

)

+g3
(
α

(0)
1i + α

(1)
1i ε + α

(2)
1i ε2 + . . . + α

(n−2)
1i εn−2 + α

(n−1)
1i εn−1 + . . .

)

+g5
(
α

(0)
2i + α

(1)
2i ε + α

(2)
2i ε2 + . . . + α

(n−2)
2i εn−2 + . . .

)

+ . . . . . . . . . . . . . . . .
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D̄2 D2 D2 D̄2 D2 D̄2

Figure 1: Supergraphs contributing to the chiral propagator at 1 loop and their scalar counterpart.

+g2n−1
(
α

(0)
n−2i + α

(1)
n−2iε + . . . . . .

)

+g2n+1
(
α

(0)
n−1i + . . .

)
. (2.6)

In a given order of PT equal to n one needs all terms of the double expansion with a

total power of g2 · ε equal n. The existing freedom of choice of the coefficients α
(m)
ki is

sufficient to get simultaneously the vanishing of the anomalous dimensions (read conformal

invariance) and the pole terms in Z factors (read finiteness). The coefficients from α
(0)
ni

to α
(n)
0i calculated in the n-th order of PT are related. One cannot put either of them to

zero in an arbitrary way. For a more complete discussion and some examples of how these

procedure works see our previous paper [18].

Our goal now is to calculate several terms of the double expansion (2.6) and to look

for particular solutions when expansion breaks down at the first terms. In the case of

a β-deformed SYM theory such a solution was found in [15] and corresponds to the real

deformations, i.e., to |q| = 1.

In dimensional regularization (reduction) and MS renormalization scheme the anoma-

lous dimension of a chiral superfield has the following form in the n-th order of PT:

γ(g, {hi}) =

n∑

k=1

k c1k(g, {hi}), (2.7)

where c1k are the coefficients at the lowest order pole in Z−1
2 . In the 1-loop order one has

for the chiral field renormalization constant

Z−1
2 = 1 −

N

(4π)2
(
f({hi}, N) − 2g2

) 1

ε
. (2.8)

Contributions to Z−1
2 are presented in figure 1 where red, black, and green dots correspond

to chiral-gauge Φ̄V Φ, chiral h1, h2 and chiral h3 vertices. After performing D-algebra

all diagrams in figure 1 reduce to the same scalar logarithmically divergent integral with

different colour factors ( hereafter we used SusyMath ver. 1.1 [31] and FeynCalc 5.1 [32]

Mathematica packages to verify our calculations ). From (2.8) one can see that

c11 = −
N

(4π)2
(
f({hi}, N) − 2g2

)
, (2.9)
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where

f({hi}, N) =
3∑

i,k=1

fikhih̄k =

(
1−

2

N2

)
(|h1|

2+|h2|
2)+

2

N2
(h1h̄2 + h2h̄1) +

(
1−

4

N2

)
|h3|

2,

(2.10)

so the nonzero coefficients fik are

f11 = f22 =

(
1 −

2

N2

)
, f33 =

(
1 −

4

N2

)
, f21 = f12 =

2

N2
, (2.11)

where N is the number of colors of the gauge group SU(N).

Thus, the one-loop conformal condition takes the form

f({hi}, N) − 2g2 = 0. (2.12)

To fulfil it, the coefficients in the expansion (2.6) {ai} = (a1, a2, a3) must then satisfy the

following requirement:
3∑

i,k=1

fikaiāk = 2. (2.13)

To find other terms of expansion (2.6), one has to calculate the pole coefficients cik of (2.7)

at higher orders of PT. For simplicity, we consider everywhere only the difference between

the Leigh-Strassler deformed and the undeformed N = 4 SYM theory since calculating

the difference we skip the calculation of many diagrams with gauge lines inside the dia-

grams [16]. The resulting expressions have some common structure in all orders of PT

which simplifies the analysis:

Up to three loops in the planar case (or up to two loops in the non-planar case) the

coefficients cik have the following form:

cnk = (f({hi}, N) − 2g2)Pnk(hi, g
2, N), n = 1, . . . , 3, k = 1, . . . , n , (2.14)

where Pnk(hi, g
2, N) is a homogenous polynomial of the form:

Pnk({hi}, g
2, N) =

n−1∑

L=0

3∑

i,k=1

(Pnk)ikL(hih̄k)
L(g2)(n−1)−L, k = 1, . . . , n, (2.15)

where (Pnk)ikL are some real numbers. One can see that the one-loop conformal condi-

tion (2.12) is exact up to 3 loops in the planar case and up to two loops in the non-planar

case. In higher orders new contributions appear and eq. (2.14) is modified.

2.1 Three-loop (non-planar limit) conformal condition

Starting from three loops in the nonplanar case one has the new contribution coming from

the set of supergraphs with the ”cross” topology (see figure 2). Equation(2.14) then takes

the form

cnk = (f({hi}, N) − 2g2)Pnk({hi}, g
2, N) + Gnk({hi}, N), n ≥ 3, k = 1, . . . , n , (2.16)

– 5 –



J
H
E
P
0
4
(
2
0
0
8
)
0
0
3

=⇒Φ̄ ΦD2

D̄2
D̄2

D̄2D̄2

D2D2

D2
D2

D̄2

Figure 2: The topology of the relevant divergent non-planar supergraphs and their scalar coun-

terpart at 3 loops

where

Gnk({hi}, N) =

3∑

i,p=1

(Gnk)ip(hih̄p)
n, (2.17)

is a homogeneous polynomial, and

Gnk({aig}, N) 6= 0, (2.18)

i.e., Gnk do not vanish when applying the one loop conformal condition (2.12), and to

achieve conformal invariance one has to take more terms of the double expansion (2.6). At

this order of PT, to get simultaneously conformal and finite theory, one needs the following

terms of expansion (2.6):

hi = g
(
a1 + α

(2)
0i ε2 + g2α

(1)
2i ε1 + g4α

(0)
4i

)
, i = 1, 2, 3. (2.19)

The only nonvanishing contribution at this order of PT is G31. The explicit form of G31

comes from the set of three loop nonplanar supergraphs with ”cross” topology (figure 2).

The D-algebra for every supergraph in this set is identical and leads to the same bosonic

integral. It is easy to see that every supergraph with ”cross” topology has no divergent

subgraphs and every such supergraph contributes only to the simple pole coefficient in the

singular part of the bare chiral propagator 〈ΦΦ̄〉B . So G31 = −D31, where D31 is the pole

coefficient in the singular part of the 〈ΦΦ̄〉B , and looks like

G31({hi}, N) = −
1

128

6ζ(3)

(4π)6
N2 − 4

N3
× (2.20)

{
|h1 − h2|

2
(
N2|h2

1 + h2
2 + h1h2|

2 − 9N2|h1|
2|h2|

2 + 5|h1 − h2|
4
)

−18|h3|
2((N2 − 5)|h2

1+h2
2|

2−(N2−10)(h̄1h̄2(h
2
2 + h2

1)+c.c.)−20|h1 |
2|h2|

2)

+
(
h̄3

3(h1 − h2)((N
2 + 20)(h2

1 + h2
2) + 10(N2 − 4)h1h2) + c.c.

)

−8(N2 − 10)(|h3|
2)3

}
.

Now we follow the standard procedure [18]: from the requirement of vanishing of the

anomalous dimension one has up to 3 loops:

γ = c11 + 2c21 + 3c31 = 0 (2.21)
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and substituting (2.19) in (2.21) one has

1 loop :
3∑

i,k=1

fikaiāk = 2, (2.22)

3 loops : d1

3∑

i,k=1

fik(aiᾱ
(0)
4k + α

(0)
4i āk) = −3d2G

Σ
31,

where hereafter we define

G31({aig}, N) = d2G
Σ
31g

6. (2.23)

and d1 = N
(4π)2 , d2 = −N3

128
6ζ(3)
(4π)6 . The explicit form of GΣ

31 is:

GΣ
31 =

N2 − 4

N6
{|a1 − a2|

2
(
N2|a2

1 + a2
2 + a1a2|

2 − 9N2|a1|
2|a2|

2 + 5|a1 − a2|
4
)

−18|a3|
2
(
(N2 − 5)|a2

1 + a2
2|

2 − (N2 − 10)
(
ā1ā2(a

2
2 + a2

1) + c.c.
)
− 20|a1|

2|a2|
2
)

+
(
ā3

3(a1 − a2)((N
2 + 20)(a2

1 + a2
2) + 10(N2 − 4)a1a2) + c.c.

)

−8(N2 − 10)(|a3|
2)3}. (2.24)

To get α
(2)
0i , according to [18], one has to consider 〈ΦΦ̄〉B . From the requirement of

vanishing of all poles in 〈ΦΦ̄〉B one has

6d3
1

3∑

i,k=1

fik(aiᾱ
(2)
0k + α

(2)
0i āk) − d2G

Σ
31 = 0. (2.25)

We used the RG equations to restore the necessary higher pole coefficients. To reach the

total finiteness, one can use the remaining coefficients. From the requirement that Z−1
2 = 1

in 3 loops one gets, as in [18],

3d2
1

3∑

i,k=1

fik(aiᾱ
(1)
2k + α

(1)
2i āk) + d1

3∑

i,k=1

fik(aiᾱ
(0)
4k + α

(0)
4i āk)

+6d3
1

3∑

i,k=1

fik(aiᾱ
(2)
0k + α

(2)
0i āk)g

6 + d2G
Σ
31 = 0, (2.26)

or using (2.22), (2.25):

3d2
1

3∑

i,k=1

fik(aiᾱ
(1)
2k + α

(1)
2i āk) − d2G

Σ
31 = 0. (2.27)

Putting all together we obtain that up to 3 loops {hi} must satisfy the following condition:

3∑

i,k=1

fikhih̄k =

(
1 −

2

N2

)
(|h1|

2 + |h2|
2) +

2

N2
(h1h̄2 + h2h̄1) +

(
1 −

4

N2

)
|h3|

2 (2.28)

= g2

{
2 −

ζ3

128
GΣ

31ε
2 −

2ζ3

128
GΣ

31

(
g2N

16π2

)
ε +

18ζ3

128
GΣ

31

(
g2N

16π2

)2
}
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For the bare couplings one has:

3∑

i,k=1

fik(hih̄k)|B = g2
B

{
2 −

ζ3

128
GΣ

31ε
2 + . . .

}
(2.29)

For any values of the coefficients in (2.19) which satisfy (2.28) the theory is conformally

invariant and finite up to three loops. In the planar limit we see from(2.24) that the

coefficient GΣ
31 vanishes, which leads us to the one-loop conformal condition.

2.2 Four-loop (planar limit) conformal condition

The situation is simplified in the planar ( large N of the SU(N) gauge group ) limit. In

this case, in the one-loop conformal condition (2.10) only the diagonal terms fik, i = k

survive

f({hi}, N) =

3∑

i,k=1

fikhih̄k = |h1|
2 + |h2|

2 + |h3|
2, (2.30)

so from (2.12) one has

|h1|
2 + |h2|

2 + |h3|
2 − 2g2 = 0. (2.31)

At three loops all Gik = 0 (note that the set of supergraphs with ”cross” topology does

not survive in the planar limit). At four loops the only nonvanishing contribution to G41

comes from the set of planar supergraphs with the new ”ladder” topology (see figure 3).

The D-algebra for every supergraph in this set is identical and leads to the same bosonic

integral. It is easy to see that every chiral supergraph with the ”ladder” topology has

no divergent subgraphs. The contribution of this set of chiral supergraphs to the chiral

propagator renormalization constant in the planar limit is:

c41({hi}, g
2, N) =

5

2
ζ(5)

N4

(4π)8
{(|h1|

2+|h2|
2+|h3|

2)4 − (2g2)4 + (|h1|
2 − |h2|

2)4 + (|h3|
2)4

+6(|h3|
2)2(|h1|

2 + |h2|
2)2 + 24|h3|

2|h1|
2|h2|

2(|h1|
2 + |h2|

2) +

+8h3
3(|h2|

2h̄3
1 − |h1|

2h̄3
2) + 8h̄3

3(|h2|
2h3

1 − |h1|
2h3

2)

−8|h3|
2(h3

2h̄
3
1+h3

1h̄
3
2) − 4|h3|

2(|h1|
2 + |h2|

2)3−4(|h3|
2)3(|h1|

2+|h2|
2)}.

Hereafter the chiral-gauge Φ̄V Φ contributions proportional to |h1|
2 + |h2|

2 + |h3|
2 −2g2 are

omitted. Note that in this case G41 = c41 and does not vanish at the one-loop conformal

condition.

With account of nonvanishing contribution to G41 one needs the following terms of

expansion (2.6):

hi = g
(
ai + α

(3)
0i ε3 + g2α

(2)
2i ε2 + g4α

(1)
4i ε + g6α

(0)
6i

)
, i = 1, 2, 3. (2.32)

From the requirement of vanishing of the anomalous dimension γ = c11+2c21+3c31+4c41 =

0, one finds

1 loop :
3∑

i,k=1

fikaiāk = 2, (2.33)

4 loops : d1[(a1α
(0)
31 + a1α

(0)
31 ) + (a2α

(0)
32 + a2α

(0)
32 ) + (a3α

(0)
33 + a3α

(0)
33 )] = −4d2G

Σ
41,

– 8 –
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Figure 3: The topology of the relevant divergent planar supergraphs and their scalar counterpart

at 4 loops

where now d1 = N
(4π)2

, d2 = 5
2

ζ(5)N4

(4π)8
. The explicit form of GΣ

41 is:

GΣ
41 =

{
(a3a3)

4 + (a1a1 − a2a2)
4 + 6(a3a3)

2(a1a1 + a2a2)
2

+24a1a1a2a2a3a3(a1a1 + a2a2) + 8a3
3(a2a2a

3
1 − a1a1a

3
2)

+8a3
3(a2a2a

3
1 − a1a1a

3
2) − 8a3a3(a

3
1a

3
2 + a3

2a
3
1)

−4ca3a3(a1a1 + a2a2)
3 − 4(a3a3)

3(a1a1 + a2a2)

}
. (2.34)

To get α
(3)
0i , according to [18], one has to consider the bare propagator. Since the

only nontrivial graph giving contribution to G41 has no divergent subgraphs, the essential

singular part of the bare propagator is D41 = −c41. From the requirement of vanishing of

all poles in 〈ΦΦ̄〉B one has

P̂44g
2
(
(aα

(3)
01 + aα

(3)
01 ) + (a2α

(3)
02 + a2α

(3)
02 ) + (a3α

(3)
03 + a3α

(3)
03 )

)
− d2Ĝ41 = 0. (2.35)

After calculating the value of P̂44 from the pole equations we find

d4
1[(aα

(3)
01 + aα

(3)
01 ) + (a2α

(3)
02 + a2α

(3)
02 ) + (a3α

(3)
03 + a3α

(3)
03 )] = d2

GΣ
41

9
. (2.36)

To reach total finiteness, one can use the remaining coefficients. From the requirement

that Z−1
2 = 1 in four loops one gets, as in [18],

d3
1[(a1α

(2)
21 + a1α

(2)
21 ) + (a2α

(2)
22 + a2α

(2)
22 ) + (a3α

(2)
23 + a3α

(2)
23 )] = −

2d2

3
GΣ

41, (2.37)

d2
1[(a1α

(1)
41 + a1α

(1)
41 ) + (a2α

(1)
42 + a2α

(1)
42 ) + (a3α

(1)
43 + a3α

(1)
43 )] = 2d2G

Σ
41.

Again we have the finite and conformal theory up to four loops if the renormalized

Yukawa couplings are chosen to satisfy the condition

3∑

i,k=1

fikhih̄k = |h1|
2 + |h2|

2 + |h3|
2 = g2

{
2 +

5

18
ζ5G

Σ
41ε

3 +
5

3
ζ5G

Σ
41

(
g2N

16π2

)
ε2 (2.38)

+5ζ5G
Σ
41

(
g2N

16π2

)2

ε + 10ζ5G
Σ
41

(
g2N

16π2

)3

+ . . .

}
,
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where GΣ
41 was given above (2.34). For the bare couplings one has

|h1|
2
B + |h2|

2
B + |h3|

2
B = g2

B

{
2 +

5

18
ζ5G

Σ
41ε

3 + . . .

}
. (2.39)

This again permits, in particular, the value of |q| 6= 1, thus allowing one to obtain a complex

deformation of the N = 4 SYM theory with arbitrary complex β.

3. Unitarity transformation

As was first noticed in [33], considering the full Leigh-Strassler deformation one can find

special points in the parameter space of {h1, h2, h3} at which the theory is unitary equiv-

alent to the β-deformed N = 4 SYM theory.

Consider a general unitary matrix U(3) (UU+ = 1). It depends on 9 parameters.

Three of them are the Euler angles and the other six are the phases. Similarly to the quark

mixing, five of six phases can be eliminated by the redefinition of the chiral superfields.

What is left has the standard Cabbibo-Kobayashi-Maskawa form [34]

U =




c1 c3s1 s1s3

−c2s1 c1c3 − eiys2s3 eiyc3s2 + c1c2s3

s1s2 −c1c3s2 − eiyc2s3 eiyc2c3 − c1s2s3





where si = sin(xi) and ci = cos(xi).

We take now the β-deformed theory and make an arbitrary unitary transformation of

the fields

Φi = UijΨj. (3.1)

After that we demand the new theory to be of the Leigh-Strassler type. It means the

absence of nondiagonal terms like Tr(ΨiΨjΨj) i 6= j. In the above-defined parametrization

of the unitary matrix this procedure leads to the full Leigh-Strassler deformation theory

provided the parameters take on the following values:






x1 = ± arccos( 1√
3
) + πk,

x2 = π
4 + πl

2 ,

x3 = π
4 + πm

2 ,

y = π
2 + πn.

(3.2)

It should be mentioned that besides the absence of the mixed terms we would like also to

get the coefficients of Tr(Ψ3
i ) to be equal. Indeed, the absence of non-diagonal terms in our

case automatically leads to the equal coefficients of Tr(Ψ3
i ) up to the phases eiαi . However,

these phases can be eliminated by the additional phase rotation of the chiral superfields

Ψi → e−i
αi

3 Ψ̃i and one gets the theory of exactly the Leigh-Strassler form.

As the result, the superpotential which is obtained from the β-deformed SYM theory

by unitary transformation (3.1) with parameters fixed by (3.2) has the form

W = iT r
(
h̃1Ψ1Ψ2Ψ3 − h̃2Ψ1Ψ3Ψ2

)
+ i

h̃3

3

3∑

i=1

Tr(Ψ3
i ), (3.3)
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where 




h̃1 = i(a − b)

h̃2 = i(a + b)

h̃3 = 2ib

or






h̃1 = e±
π

3 (a − b)

h̃2 = e±
π

3 (a + b)

h̃3 = −2ib

(3.4)

Here the factor e±
π

3 has the origin from the different phases of the Tr(Ψ3
i ) term for different

i. The parameters a and b are linked with the original couplings h1 and h2 by

{
a = ±1

2(h1 + h2),

b = ± 1
i2
√

3
(h1 − h2).

(3.5)

The signs in expressions for a and b can be chosen independently.

The chiral propagators calculated in the full Leigh-Strassler deformed theory (3.3)

with the couplings chosen as (3.4), (3.5) will be the same as calculated in the β-deformed

theory. This provides us with nontrivial check of the calculations made in the Leigh-

Strassler deformed theory. Namely, taking expressions (2.20), (2.32) and after making a

substitution (3.4), (3.5) one obtains the known results for the β-deformed theory [16, 15].

4. Exploring the conformal conditions

Let us consider the calculated expressions for G31 in the non-planar case and G41 in the

planar case and try to find such values of (h1, h2, h3) when these quantities vanish meaning

that the one-loop conformal condition is valid up to three or four loops. Knowing that in

the case of the real beta deformation in the planar limit the one-loop conformal condition is

exact we are interested in finding new solutions in the full Leigh-Strassler deformed theory

for which the one-loop conformal condition is also exact.

First of all, similarly to the β-deformed theory, we have not found any solution for

vanishing of G31 in the nonplanar case which has a simple form and might be valid in any

order of PT.

In the planar case, on the contrary, we found two families of simple solutions of the

equation G41 = 0.

Solution # 1: 




h̃1 = geiα(A − B),

h̃2 = geiα(A + B),

h̃3 = 2geiαB,

(4.1)

where A,B,α are arbitrary real numbers. The one-loop conformal condition brings us to

the following relation between A and B:

B2 =
1 − A2

3
.

If this condition is satisfied, then G41 = 0 for arbitrary α and −1 ≤ A ≤ 1.

However, it is easy to see that solution # 1 coincides with the left part of (3.4). This

means that the obtained theory is unitary equivalent to the β-deformed case and is exactly

conformal in the planar limit.
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Solution # 2: 




h̃1 = −geiα,

h̃2 = 0,

h̃3 = geiβ ,

α − β 6= 2πm
3

or






h̃1 = 0,

h̃2 = geiα0,

h̃3 = geiβ ,

α − β 6= 2πm
3

(4.2)

These two cases are equivalent. For α−β = 2πm
3 the obtained theory is unitary equivalent

to the real β-deformed one, but for arbitrary real values of α and β this is genuine.

Solution # 3: 




h̃1 = g(A − iB),

h̃2 = g(A + iB),

h̃3 = −4igB,

(4.3)

where A and B are equal to A = ±1
2 , B = ± 1

2
√

3
. This solution is unitary equivalent to

solution # 2.

Thus, the only nontrivial solution that exists in the planar limit and leads to conformal

theory (up to 4 loops at least) corresponds to the superpotential which can be written in

the form

W = ih

∫
d6z

(
qTrΦ1Φ2Φ3 −

1

q

3∑

i=1

Tr(Φ3
i )

3

)
. (4.4)

where |h|2 = g2 and |q| = 1. The case q = ei πn

3 brings us back to the real β-deformed

theory. In the next section we consider some properties of this theory.

5. Exact conformal invariance?

One may wonder if the theory defined by the superpotential (4.4) is exactly conformal in

the planar limit when |q| = 1 precisely like the β-deformed one. To understand whether

the conformal condition is exhausted by one loop, we consider the corrections to the chiral

propagator being interested in the phase-dependent ones. Due to the unitary equivalence

to real β-deformed theory for particular values of the phase the absence of phase-dependent

terms would mean the exact conformal invariance of the theory.

One can observe that the conformal condition in the planar limit is related to topology

of the chiral diagrams [35]. The one-loop conformal condition stays valid in higher orders

when the diagrams contain the ”bubbles” on the lines. The next structure that might

emerge is a triangle, but since the propagators are always chiral-antichiral such a kind

of diagrams is forbidden. The next structure is the ”box” present in the ”ladder” type

diagrams. It appears for the first time in four-loops and does not contain a phase factor in

the planar limit. To get the phase factor, one should consider more complicated polygons.

From the superpotential (4.4) one can notice that only phase-dependent structures

that can emerge are of the form

(|h3|
2)n(|h1|

2)l[(h3h̄1)
3k + (h̄3h1)

3k], k = 0, 1, . . . .

Hence, if h1 = hq, h3 = h
q
, q = eiγ the only phase-dependent contribution looks like

const × cos(6kγ).

– 12 –
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Since we know that when q = ei πn

3 the theory is unitary equivalent to the real β-

deformed one, it should be exactly conformal for γ = πn/3. This corresponds to cos(6kγ) =

cos(2πkn) = 1 for arbitrary k and n. Moreover, it is clear that the substitution

γ → γ +
π

3

does not change anything and if a theory is exactly conformal for some γ, it automatically

conformal for

γ +
πn

3
.

This is similar to the beta deformed case where such an equivalence was of the form

β → β + πn.

So the crucial question is whether it is possible to construct a diagram which is phase-

dependent in the planar limit. This happened to be not a simple task for the following

reasons:

1. All possible phase-dependent ”boxes” are suppressed in the planar limit. Thus, the

possible phase-dependent diagram should contain more complicated structures.

2. The diagram containing a polygon higher than the ”box” in which all phase-

dependence is encoded has many external legs. Hence, to reduce their number to two in

order to get the chiral propagator and keeping only the planar diagrams, one has to make

new ”boxes” which again contain no phases. As the result, at least up to ten loops, one

cannot construct a potentially phase-dependent diagram in the planar limit. We assume,

though we have no rigorous proof yet, that in the planar limit such a phase-dependent

structure does not emerge in any order of PT.

The extra argument for the exact conformal invariance of the presented theory comes

from the the investigation of the integrability properties of the one-loop dilatation operator

in the full Leigh-Strassler theory made in [36]. The above suggested solution corresponds

to the points in the parameter space where the theory was found to be integrable in the

planar limit. This seems to be similar to the β-deformed case where the exact conformal

condition is accompanied with the integrability [37].

Thus our conjecture is that the theory defined by the superpotential (4.4) with |q| = 1

is exactly conformal in the planar limit.

6. Conclusion

We have investigated here the conformal conditions for the full Leigh-Strassler deformation

of the N = 4 SYM theory both in the planar and nonplanar cases. The conformal condition

was found up to four loops in the planar limit and up to three loops in non-planar case. We

would like to emphasize that the obtained theory is simultaneously conformal invariant and

finite since these two requirements are identical. This can be achieved properly adjusting

the Yukawa couplings order by order in PT. In the framework of dimensional regularization

this requires the double series over the gauge coupling g and the parameter of dimensional

regularization ε.
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Since in the full Leigh-Strassler deformation of the N = 4 SYM theory there is an

extra coupling constant, we have more freedom in our theory. Thus we looked for the

solutions where the one-loop conformal condition is exact and at the same time which

are not obtainable from the real beta deformation of the N = 4 SYM theory by unitary

transformation. We did not find such solutions in the nonplanar case but in the planar

limit we found one potentially interesting solution. We made certain that in the planar

limit the one-loop conformal condition in this case is valid up to ten loops and we present

the arguments that it might also be valid in any order of PT.

If our conjecture is true, then it will be interesting to understand the nature of this

exact conformal condition from the field theory side as well as from the point of view

of the dual gravity background. While constructing gravity dual background for the β-

deformed theory the important role was played by the global U(1) × U(1) symmetry of

the Lagrangian. The theory presented here has no continuous global symmetries but at

some points of the parameter space it is unitary equivalent to the β-deformed theory. This

suggests some common features hidden so far. From this point of view constructing the

dual description would be very interesting.
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